中线定理

如图,在 ABC\triangle ABC 中,DDBCBC 的中点,则有

AB2+AC2=2AD2+12BC2=2AD2+2BD2=2AD2+2CD2 .AB^2+AC^2 = 2AD^2+\frac{1}{2}BC^2 = 2AD^2+2BD^2 = 2AD^2+2CD^2 ~.

即三角形一条中线两侧所对的边平方和等于底边平方的一半与该边中线平方的两倍的和 .

Pappus Law - img 0


以下讨论中,设 AD=x,AB=c,AC=b,BC=aAD=x,AB=c,AC=b,BC=a,原命题即化为

b2+c2=2x2+12a2 .b^2+c^2 = 2x^2+\frac{1}{2}a^2 ~.

第 1 种(繁)

Pappus Law - img 1.1

如图,在 ABC\triangle ABC 中,有 AD=AB+BD=AC+CD\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AC}+\overrightarrow{CD} .

于是有

ADAD=(AB+BD)(AC+CD)AD2=ABAC+ABCD+BDAC+BDCDAD2=ABACcosA+ABCDcosB+BDACcosCBDCDx2=bccosA+12accosB+12abcosC14a22x2=2bccosA+accosB+abcosC12a2 .\begin{aligned} \overrightarrow{AD}\cdot\overrightarrow{AD} & = (\overrightarrow{AB}+\overrightarrow{BD})\cdot(\overrightarrow{AC}+\overrightarrow{CD})\\ \left\lvert\overrightarrow{AD}\right\rvert^2 & = \overrightarrow{AB}\cdot\overrightarrow{AC}+\overrightarrow{AB}\cdot\overrightarrow{CD}+\overrightarrow{BD}\cdot\overrightarrow{AC}+\overrightarrow{BD}\cdot\overrightarrow{CD}\\ \left\lvert\overrightarrow{AD}\right\rvert^2 & = \left\lvert\overrightarrow{AB}\right\rvert\left\lvert\overrightarrow{AC}\right\rvert\cos A+\left\lvert\overrightarrow{AB}\right\rvert\left\lvert\overrightarrow{CD}\right\rvert\cos B+\left\lvert\overrightarrow{BD}\right\rvert\left\lvert\overrightarrow{AC}\right\rvert\cos C-\left\lvert\overrightarrow{BD}\right\rvert\left\lvert\overrightarrow{CD}\right\rvert\\ x^2 & = bc\cos A + \frac{1}{2}ac\cos B + \frac{1}{2}ab\cos C - \frac{1}{4}a^2\\ 2x^2 & = 2bc\cos A + ac\cos B + ab\cos C - \frac{1}{2}a^2 ~. \end{aligned}

由余弦定理

bccosA=b2+c2a22 ,accosB=a2+c2b22 ,abcosC=a2+b2c22 .\begin{aligned} bc\cos A & = \frac{b^2+c^2-a^2}{2} ~,\\ ac\cos B & = \frac{a^2+c^2-b^2}{2} ~,\\ ab\cos C & = \frac{a^2+b^2-c^2}{2} ~. \end{aligned}

代入,得

2x2=b2+c2a2+12a2+12c212b2+12a2+12b212c212a2 .\begin{aligned} 2x^2 & = b^2+c^2-a^2+\frac{1}{2}a^2+\frac{1}{2}c^2-\frac{1}{2}b^2+\frac{1}{2}a^2+\frac{1}{2}b^2-\frac{1}{2}c^2-\frac{1}{2}a^2 ~. \end{aligned}

2x2=b2+c212a2 .\begin{aligned} 2x^2 & = b^2+c^2-\frac{1}{2}a^2 ~. \end{aligned}

b2+c2=2x2+12a2 .\begin{aligned} b^2+c^2 & = 2x^2+\frac{1}{2}a^2 ~. \end{aligned}

第 2 种(余弦定理)

ABD\triangle ABDABC\triangle ABC 中,由余弦定理可得

{a2+c2b2=2accosB(1)14a2+c2x2=accosB(2)\begin{cases} a^2+c^2-b^2 = 2ac\cos B & (1)\\ \frac{1}{4}a^2+c^2-x^2 = ac\cos B & (2) \end{cases}

(2)×2(1)(2)\times 2-(1) 可得

12a2+c2+b22x2=0 .\begin{aligned} -\frac{1}{2}a^2+c^2+b^2-2x^2 & = 0 ~. \end{aligned}

b2+c2=2x2+12a2 .\begin{aligned} b^2+c^2 & = 2x^2+\frac{1}{2}a^2 ~. \end{aligned}

ACD\triangle ACDABC\triangle ABC 中,相似的推理可得相同结论 .

第 3 种(作高)

Pappus Law - img 3.1

如图,作 AEBCAE\perp BCEE .

EEDD 的左侧,设 AE=h,BE=yAE=h,BE=y,有

{h2+y2=c2(1)h2+(12ay)2=x2    h214a2ay+y2=x2(2)h2+(ay)2=b2    h2+a22ay+y2=b2(3)\begin{cases} h^2+y^2=c^2 & (1)\\ h^2+(\frac{1}{2}a-y)^2=x^2 \iff h^2-\frac{1}{4}a^2-ay+y^2=x^2 & (2) \\ h^2+(a-y)^2=b^2 \iff h^2+a^2-2ay+y^2=b^2 & (3) \end{cases}

(1)+(3)(2)×2(1)+(3)-(2)\times 2

(h2+y2)+(h2+a22ay+y2)2(h2+14a2ay+y2)=b2+c22x2 .\begin{aligned} (h^2+y^2)+(h^2+a^2-2ay+y^2)-2(h^2+\frac{1}{4}a^2-ay+y^2) & = b^2+c^2-2x^2 ~. \end{aligned}

12a2=b2+c22x2 .\begin{aligned} -\frac{1}{2}a^2 & = b^2+c^2-2x^2 ~. \end{aligned}

b2+c2=2x2+12a2 .\begin{aligned} b^2+c^2 & = 2x^2+\frac{1}{2}a^2 ~. \end{aligned}